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LOCALLY THREE-DIMENSIONAL LAMINAR FLOWS 

V. V. Bogolepov and I. I. Lipatov UDC 532.526 

Local variations in the flight vehicle surface, either specially designed or natural, 
may significantly affect heat transfer and skin friction and determine the state of the 
boundary layer. Analysis of the limiting solutions to Navier--Stokes equations as Re § ~ (Re 
is Reynolds number) carried out in [I, 2] showed that different states of laminar boundary 
layer are possible near two-dimensional roughnesses, characterized by a difference in the 
ratio of viscous forces to inertia forces and in the nature of viscous-inviscid interaction 
near the roughness. The method of matched asymptotic expansions was used in [I, 2] to study 
such flow situations and numerical results for the corresponding boundary-value problem were 
obtained. Subsequently, results were obtained for studies on specific flow conditions or 
roughness shapes [3-9]. In practice, three-dimensional and not two-dimensional roughness is 
more frequently encountered; interest in the study of flow past such roughness is also asso- 
ciated with the problem of the flow past elements of relief on the earth's surface. Results 
of investigations on flow past three-dimensional roughness are given in [10-16]. However, 
not all possible flow conditions near three-dimensional roughness have been investigated. 
This paper deals with studies on the flow past roughness whose length is less or equal to 
the boundary-layer thickness as well as longer roughness in whose neighborhood there is no 
interaction with the external inviscid flow. 

I. Consider a steady flow past three-dimensional roughness located at the bottom of 
a laminar boundary layer at a distance 1 from the leading edge of a flat (Fig. I). 

The coordinate system is chosen such that x axis is in the direction of the external 
flow, y axis is normal to the surface, and z axis is perpendicular to x and y axes. It is 
assumed that the velocity profile in the laminar boundary layer upstream of the roughness has 
velocity components in the x and y directions only. 

The above assumption is true if the lateral edge of the flat plate is sufficiently far 
from the roughness. The following notations are used for cartesian coordinates and the re- 
spective vector components of velocity, total enthalpy, density, pressure, and dynamic vis- 
cosity: 

~xl, yl, zl, u~u, u~v, u~w, ~oott, p~p, p~p, ~| 

(the subscript ~ denotes dimensional quantities in the free stream). Limiting flow situation 
at large but subcritical Reynolds numbers (Re = p~u~l/~) when laminar flow is retained is 
considered. 

It is assumed that the transverse dimension b of the roughness is of the same order as 
the streamwise dimension a [the flow near slender roughness b = o(a) will be considered be- 
low]. It is worth mentioning that the flow past roughness with a = o(b) reduces to a two- 
dimensional problem and the flow past roughness with equal streamwise and transverse dimen- 
sions leads to a three-dimensional problem. It is also assumed that for given values of a 
and h the thickness of the roughness c is such that in the disturbed flow near the roughness 
the order of the viscous force is not less than the inertial force. Considering the velocity 
profile in the boundary layer near the surface of the body to be u ~ y/60 and making an order 
of magnitude analysis of terms representing viscous and inertial forces in the x-momentum 
equation, we get 

c <,  O(asX/a), 8 o  = s = ~ e  - ' I /2 .  ( 1 . I ) 
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In deriving Eq. (1.1) it was also assumed that the pressure gradient induced by the rough- 
ness is large (3p/~x ~ 1). 

According to [I, 2], whose results for a = O(b) can be generalized to three-dimensional 
flows, the structure of the flow near the roughness depends on the relative size a of the 
roughness with respect to the boundary-layer thickness 60 = O(Re -~/2) ahead of the roughness. 
It follows from Eq. (1.1) that when a > O(s 3/2) c = o(a); hence, the maximum dimension of the 
disturbed flow region is determined by the dimensions a or b. If there is separation in the 
flow then it is assumed that its dimension also does not exceed the characteristic dimension 
a. The region with identical characteristic dimensions along x, y, and z axes and equal to 
a (region I) contains streamlines of the external inviscid irrotational flow, streamlines 
of the undisturbed boundary layer, or streamlines of the wall shear layer, if the streamwise 
dimension of the roughness a is an order of magnitude greater than the boundary-layer thick- 
ness 6o, equal to this value, or asymptotically smaller, respectively. The flow in the re- 
gion I happens to be weakly disturbed since the fulfillment of inequality (1.1) implies that 
nonlinear variations take place in the wall region III with thickness equal to the thickness 
of the roughness c = o(a) for a > 0(E3/2), i.e., at the bottom of the region I. 

The solution to the boundary-value problem describing the flow in the region I makes it 
possible to establish a relation between the change in boundary-layer displacement thickness 
(or its wall sublayer thickness) and the induced change in pressure, which is known a priori, 
and should be determined during the simultaneous solution of the boundary-value problems in 
the characteristic regions of the flow. If the streamwise dimension of the roughness a ex- 
ceeds the boundary-layer thickness 6o, then for subsonic external flow, the boundary-value 
problem in the region I reduces to Laplace equation with homogeneous boundary conditions at 
larg e distances from the roughness or to hyperbolic equation of the linear supersonic flow 
theory. Contribution to the change in displacement thickness is made, in the general case, 
by thickness of the roughness as well as by the change in the thickness of the region with 
nonlinear variations in the flow near the roughness. Such a flow situation is considered in 
[10] for hypersonic external flow, assuming hypersonic interaction parameter to be small and 
in [11] for subsonic external flow. Flow past shorter roughness elements is studied in the 
present paper. It is shown in [I~ 2] that if the streamwise dimension a of the roughness is 
less than a0 = 0(s3/4), when the contribution to the change displacement thickness due. to the 
thickness of the roughness and due to the change in the thickness of the nonlinear wall re- 
gion is the same, then "compensation" condition is realized. In such a situation there is 
no disturbance in the region I to the first approximation. 

When a > 0(6o), the disturbed flow consists of three regions with the thickness of the 
region II equal to the boundary-layer thickness ahead of the roughness. It appears that in 
view of the small changes in functions in the region II, the change in its thickness is an 
order of magnitude less than the change in the thickness of the near-wall region in the ab- 
sence of intense cooling or strong suction. The role of the region II consists of trans- 
fering the change in thickness of the region IIl to the region I. In the "compensated" con- 
dition the increase or decrease in the thickness of the roughness is compensated by the cor- 
responding reduction or increase in thickness of the nonlinear flow region, since the total 
thickness remains constant and there are no disturbances in regions I and II. 
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It follows from the results of [I, 2] that "compensation" condition leads to the condi- 
tion 

~x ( x , y ~ = O , z ) = O ,  y x = y / a .  (1.2) 

In the region III whose characteristic dimensions coincide with the dimensions of the 
roughness, the following coordinates are introduced 

(x ,  y~ z)  = (axn , eal/Syaaza) 

and the functions are denoted by 

(u, v, w, p, P, ~) = (at/nun, ea-t/ava, ai/nwn, p~/p~u% + a~/n Pn, Pw, ~ ) .  

The s u b s t i t u t i o n  o f  E q s .  
s c o n d i t i o n  

(1 .3) 

(1.4) 

(1.3) and (1.4) in Navier--Stokes equations and taking the limit- 

s - + O ,  a - ) -  O, b - - - - O ( a )  

O~tt 3 
= P,w Oy'-~a,; 

O2u, s 

(1.5) 

(I .6) 

lead to the following system of equations 

0% Ou a Oua .4- OP--- 8 
+ po'. + p ,,3 o, E - 0,3 

9wU3 4- p wVs ay s , 
6a~ Ow n Or% @3 

Ou s Ovs Owa 

with boundary conditions 

u3 --~ doY3, ..wn = 0 as x n --+ - - o o ,  

un = wa = vn = 0 at Ya = cs"la-lln](xn, za),: 

u s = d o y s ,  w a = O  as y a h o o .  

(1.7) 

The pressure distribution p3(x3, z3) is initially unknown and in order to determine it an 
auxiliary boundary condition which is added to the function u3 as ya-+oo (u s- d0y s-- ~a)) is 
used. In particular, condition (1.2) is equivalent to the condition r The substitution 
of variables in the boundary-value problem (I .6), (I .7) 

Yn = ~3 + ])ca-~/ns-1, xa ' =  pwdocan-3a-l~t~Ix3, 

V 3 = V 3 + Un Ofl~ + w3 c-llxweall3pwl , u 3 = cdos-~a-~/n'un, 

leads to the boundary-value problem of the type 

u e --z- + v s ~ 4- w s --~ q- #Pn 
az3 avs azn ax3 -- ~=a' 

a g  s - . a ' ~  3 ~ a~, s .  ~ ogg, n 
ua ~ + va ~ + a& 

-~- + - ~ -  + gz-~ = O, 
Ox~ ay 8 

u L = Y n ,  ~~ as x s - - ~ - c o ,  u n = w 3 = ~ 3 . = O  at Y a = O ,  

(1.8) 

2. When the thickness of roughness is small in terms of Eq. (1.3), the boundary-value 
problem (1.8) can be linearized. The following expressions for functions are introduced: 

u 3 = ~ + s  ~ = s  ~ a = . s  ~ a = s  Y a = Y ,  x a = X ,  ( 2 . 1 )  

w h e r e  f = ~F ,  ~ ~ 1. The b o u n d a r y - v a l u e  p r o b l e m  i n  t e r m s  o f  v a r i a b l e s  ( 2 . 1 )  h a s  t h e  f o r m  

Y a U / a X  + g + a p / a x  = aiu/oY=, 
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Y O W / O X  i+ OP/OZ = 02W/OY ~ 

OU/OX + OV/OY + Og//OZ =.0,, 

U = F, W = I? . as Y + o o ,  
U =  W = O as X - - +  - - o %  

U - ~  W.~-  V----O at Y----0.  

( 2 . 2 )  

Differentiating the first equation of the boundary-value problem (2.2) with respect to vari- 
ables X and Y and the second equation with respect to Z and Y after adding these equations 
leads to the following equation with the help of continuity equation 

YOs/OX = O~s/OY 2 ( 2 . 3 )  

w i th  b o u n d a r y  c o n d i t i o n s  f o r  t he  f u n c t i o n  s = --32V/3Y2 

s = O  as X - ~ - - o o ,  s -  0 as Y - ~  oo; 
OslOY = 02"P/OX 2 + 02P/OZ 2 at Y = 0,,., ( 2 . 4 )  

i o s d Y  -= -Uf [(p (P) + F (X, Z)I 
o 

(~0, if "compensated" flow condition is considered). Equation (2.3) for function s(X, Y, 
Z) is parabolic. Analysis of the last two boundary conditions (2.4) shows that the pressure 
distribution is described by elliptic equation. 

The Navier--Stokes equations from which Eq. (2.3) is obtained are of elliptic type in 
functions u, v, w, and p. The transition as Re § ~ to a system of equations for three-dimen- 
sional boundary layer leads to parabolic type of equations, as shown in [17]. The system of 
equations (2.3), (2.4) obtained from Navier--Stokes equations as a result of limiting transi- 
tion contains elliptic equation only for the function P, i.e., this system in some sense oc- 
cupies the intermediate place between the three-dimensional boundary-layer equations and 
Navier--Stokes equations. 

In order to solve the boundary-value problem (2.2) it is possible to use Fourier trans- 
form in variables X and Z: 

U~ = ~ ~ U ( X ,  Y ~ e - i ~ x - ~ Z d X d Z ,  

which gives 

Y i a U ,  + V 1 + io~P 1 = U1, Y i c z W  1 + icoP~ = W1, idU1 + V 1 + io~V 1 = O~ 

u~(~, Y, o~)= F,(~, ~), r-> ~. 

Subs'titution of variables Y = Yl(i~) -I/3 makes it possible to obtain for the function 

the equation 

Ylfl  = ]'~, 

whose solution is Airy's function [18] 

f i  = c i A i ( Y 1 ) ,  

which is damped as YI § ~. The following relation is obtained using boundary conditions 
oo * 

q Ai  (Ya) d y  1 = (io:)418 f ~  (~z, (o), c~ Ai '  (0) = - -  Pl  ~ 
0 

which results in an expression for the function Pz 

P~ = "3Ai ' (O)(~(z)smf  fl(o~ 2 "6 aF"). 

An equation for pressure fluctuation is obtained by inverse Fourier transform 

3Ai(0) C (i~)5/8 F1(05' ~ e~X+~~ d~176 
P 

4~ 2 o~ ~ + o) ~ 
- - r  - - o o  
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For F = exp (--X 2 --Z 2) this integral reduces to the following: 

p_~ 3Ai ' (O)i ir~/3e-r2/4-~162176176162176176 (2 .5)  

co 2 ~ r 2 
0 0 

Computed p r e s s u r e  d i s t r i b u t i o n s  P(X, Z) [see  Eq. ( 2 . 5 ) ]  a re  shown in F ig .  2 where dashed 
line indicates pressure distribution for the plane flow near a roughness of the form F = 
exp (--X2) . 

It is possible to mention that the transition to plane flow is accompanied by a redis- 
tribution of pressure, a decrease in pressure upstream and an increase downstream of the 
roughness. There is no pressure fluctuation upstream of the roughness in plane flow as X < 0 
for finite roughness and only a change in the pressure level is permissible. 

This fact has been established in [19] for hypersonic flow with strong interaction. 
"Compensated" flow condition assumes conservation of total thickness consisting of roughness 
and boundary-layer displacement thickness. In the plane flow, therefore, the appearance of 
pressure fluctuation is associated with the change in body thickness. This phenomenon is also 
explained by the absence of nonzero eigenvalues for the boundary-value problem (2.2) for W = 
0, satisfying the condition for damping as X § 

In three-dimensional flow the situation is completely different. In the absence of 
roughness the increase in pressure can be accompanied by cross flow so that the increase in 
displacement thickness due to increase in pressure can be compensated by decrease in dis- 
placement thickness due to cross flow. The system of equations (2.2) has, as shown in [13], 
eigenfunctions of the form P = sin~Z exp (~X). Consequently, change in roughness shape along 
Z will lead to the appearance of velocity component W and with constant total displacement 
thickness it leads to a change in streamwise pressure which explains the possibility of up- 
stream influence of pressure in three-dimensional "compensated" flow. 

When new variables are introduced in the boundary-value problem (2.3) 

X = X, Y = g(X)N, s = k (X) , (X ,  N, Z), 

it takes the form 

where 

4" = --g2g'N2*' + N ,  + g3N,' ,  , (X,  oo,Z) =0~ dN = g-X,: 
0 

For roughnesses of the type 

a / o x  = ( ). and O/OY = ( ) ' .  

F(X, Z )  - -  c o n s t  N XO+*)/a 
the  b o u n d a r y - v a l u e  problem (2 .6)  r educes  to  a s i m i l a r i t y  s o l u t i o n  

~" + N ~ ,  ' - -  ~ N ,  = O, , (do) = O, -~ ,aN = i ,  
0 

(2 .6)  

(2.7) 

then 

Os/or l  r ~ 0  N , 'O)X(~-~)13 .  

The b o u n d a r y - v a l u e  problem (2 .7)  is  a t y p i c a l  problem with i n t e r a c t i o n .  Usua l ly  such p rob -  
lems a r e  so lved  by matching the  boundary  c o n d i t i o n  a t  N = 0 ( s e e ,  e . g . ,  [ 7 ] ) .  However, the 
form of the  second boundary  c o n d i t i o n  (2 .7)  makes i t  p o s s i b l e  to  inc lude  i t  in the  d i f f e r e n c e  
scheme and effectively use the shooting method (similar method was used in [20] to solve simi- 
lar boundary-value problems). 

It is obtained from the solution of problem (2.7) that when B = -4 the principal de- 
terminant of the difference scheme becomes zero. Obviously, this is the condition for the 
existence of nontrivial solution as X § for finite roughness elements (or in general for 
roughness with F" ~ 0). 

Numerical solution of the boundary-value problem (2.3), (2.4) was also obtained for 
roughness F = e -X2-Z2 . The pressure distribution along the line of symmetry of the roughness 
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is shown for comparison in Fig. 2 by the dashed--dotted line. Certain difference in results 
is observed only away from the vertex of the roughness due to different means of specifying 
boundary conditions for the pressure P(X, Z) while carrying out analytical and difference 

computations. 

3. It follows from the above results that the pressure distribution in the disturbed 
region is described by equations of the elliptic type. It is possible to use this equation 
to estimate transverse pressure gradient ~p/~z = O(ba-~/3). Since the order of the longitu- 
dinal pressure gradient 9p/$x is also preserved, pressure drop in the steamwise direction 
happens to be of the order of the quantity O(ba-i/3). It is possible to estimate the trans- 
verse velocity component w = O(ba-2/~) from transverse momentum equations. 

A comparison of terms in the equation for the longitudinal momentum shows that to the 
first approximation the pressure gradient ~p/~x is absent in this equation. Thus, when b = 
o(a) the original boundary-value problem is split into two. The first one describes the flow 
in the region with characteristic dimensions 

y = x = O(a), z = O(b). 

The system of equations for this region is given by system (I .8) in which the term ~p3/~x3 
is absent in the first equation. The solution of this system makes it possible to determine 
the pressure gradient ~p3/~z3 (z3 = U). 

The second problem describes the flow in the region with characteristic dimensions x = 
O(a), y = O(c), and z = O(a). 

It is worth noting that fluctuations in functions u, v happen to be less in this region 
than near the roughness. The flow here is described by the linear system of Eqs. (:2.2) in 
which the pressure distribution is obtained by solving Eqs. (2.2) with boundary conditions for 
transverse pressure gradient ~p3/Szalz3= 0 and velocity component w3(z3 = 0), obtained from the 
solution in the region adjacent to the roughness. 

In the limit as b § 0 the transverse dimension and the thickness of the roughness may 
be of the same order b = O(e). For such a flow condition the independent variables and flow 
functions can be expressed in the form 

(X, y, Zz ~ V, W, p, p) = (ax, 8al/~y, 8al/az, al/~, 8 - I ~  (3. I ) 

r a-l~$, g~a-2/aP, Pw). 

The substitution of the series (3.1) in Navier--Stokes equations and the limiting transition 
(1.5) lead to the following system of equations 

oy 

o-T o-~ o; + '~y  P-~=vmk~+ 0~2] ' (3.2) 

p--7 o-T k op. ' 
o~ + 05 o~ =0 ,  v ~ = ~ / p ~  
o-Y + o-T 

with boundary condi t ions  of the type 

re=v=0, 

This system of equations with different boundary conditions was obtained in [21] where in- 
compressible laminar flow was studied in the neighborhood of the line of intersection of two 
planes. 

It was assumed above that the thickness of roughness c is of the order O(gaz/3). Satis- 
faction of this condition ensured identical effect of viscous and inertial forces on the flow 
near the roughness. If c = O(ca L/?) the effect of viscous force becomes dominant and the ef- 
fect of inertial force is felt in higher-order approximations. Depending on the relation 
between the width of the roughness and other parameters of the problem, the following flow 
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conditions past roughness can be realized. 

When O(ga z/3) < b < O(a) the most characteristic dimension in the direction OY is the 
quantity equal to ~a-Z/3 The flow is described by the linear system of equations (2.2) in 
which there is no longitudinal pressure gradient. 

When b = O(~a z/s) the characteristic dimensions in the disturbed region are identical 
along OY and OZ. The flow in this case is described by the linearized system of equations 
(3.2) which has the form 

yOUl/C~X ~- /21 = VtO (02Ul/Oy 2 -~ 02Ul/OZ2), 

yOVl/OOX + apl/Oy a = 'V w (O~Vl/O~y ~" + 02Vl/OZ2),. 

uawl/ax + a~i/af = ~ (a~w,/o: + o~/af~), 

ouJax + av jay  + aw~/az = o, 

where u = y + h ~ t z ,  v = h v z ,  w = h w z ,  h << I ,  

] = c-Z~saVSF, 

w i t h  b o u n d a r y  c o n d i t i o n s  

u-~ = - - F ( x ,  z~, v~ = wx ---- 0 at ~ = O, 
i - - k  

u~ = v l  - -  w l  = 0 ~ ~ - +  ~ , 

�9 Ul ----- Pl = U)I = 0 as: X--~- - - o 0 .  

(3.3) 

(3.4) 

A decrease in roughness width leads to the situation that when O(c) < b < O(eaZ/3), the 
effect of inertial forces is only of the second order and the disturbed flow in the region 
with characteristic dimensions x % O(a), y % z % O(b) is described by the system of equations 
(3.3) and boundary conditions (3.4) with zero convective terms in the first three equations. 

In the above three flow conditions roughness led to linear variations in the streamwise 
velocity. Finally, when b = O(c), the height of the roughness and the characteristic dimen- 
sion of the disturbed flow are identical along OY. The flow in this case is described by the 
system of equation of the type 

02Uo 02Uo ~ 09too 02Wo 
+ ~ = 0 ,  OP~ + , , 

oy~ a~ ~o 0g a 4 ' 

Opo cO2v o c~2Vo 0% Ov o 8w o 
~.o = ;;~o + ~ ' ~o + - - + o y  ~ ~ =o ,  

where 

U 0 ~ UEC-I~, 

with boundary conditions 

vo = sac-2v,  wo = eac-~w,  xo = a - i x ,  Yo = c- lY ,  zo = c "lz, 

U o = W o = v o = O  at Y o = f ,  

Uo = Yo, Po --'- Vo = Wo ----- 0 when go z + z o  ~ o 0 .  

Returning to the analysis of roughnesses with identical dimensions along OX and OZ, it 
is necessary to observe that when a = O(~ 3/2) it follows from Eq. (1.1) that characteristic 
dimensions of roughness in all directions are identical. The flow is then described by 
Navier--Stokes equations for incompressible flow. 

An example of numerical solution to such a system of equations describing flow past 
roughness at the bottom of laminar boundary layer is given in [14]. Singularity in this sys- 
tem of equations due to a reduction in the number of parameters characterizing roughness is 
not considered here. Further studies are necessary to investigate such flow conditions and 
to obtain solutions to the above described boundary-value problems. 
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